\(\int x^3 (d+e x^2)^{3/2} (a+b \csc ^{-1}(c x)) \, dx\) [128]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 374 \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=-\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {2 b c d^{7/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {b \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{560 c^6 e^{3/2} \sqrt {c^2 x^2}} \]

[Out]

-1/5*d*(e*x^2+d)^(5/2)*(a+b*arccsc(c*x))/e^2+1/7*(e*x^2+d)^(7/2)*(a+b*arccsc(c*x))/e^2+2/35*b*c*d^(7/2)*x*arct
an((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/e^2/(c^2*x^2)^(1/2)-1/560*b*(35*c^6*d^3-35*c^4*d^2*e-63*c^2*d*e^
2-25*e^3)*x*arctanh(e^(1/2)*(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/c^6/e^(3/2)/(c^2*x^2)^(1/2)+1/840*b*(13*c^2*d
+25*e)*x*(e*x^2+d)^(3/2)*(c^2*x^2-1)^(1/2)/c^3/e/(c^2*x^2)^(1/2)+1/42*b*x*(e*x^2+d)^(5/2)*(c^2*x^2-1)^(1/2)/c/
e/(c^2*x^2)^(1/2)-1/560*b*(3*c^4*d^2-38*c^2*d*e-25*e^2)*x*(c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c^5/e/(c^2*x^2)^(1
/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {272, 45, 5347, 12, 587, 159, 163, 65, 223, 212, 95, 210} \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {2 b c d^{7/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {b x \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{560 c^6 e^{3/2} \sqrt {c^2 x^2}}+\frac {b x \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}+\frac {b x \sqrt {c^2 x^2-1} \left (13 c^2 d+25 e\right ) \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}-\frac {b x \sqrt {c^2 x^2-1} \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}} \]

[In]

Int[x^3*(d + e*x^2)^(3/2)*(a + b*ArcCsc[c*x]),x]

[Out]

-1/560*(b*(3*c^4*d^2 - 38*c^2*d*e - 25*e^2)*x*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*x^2])/(c^5*e*Sqrt[c^2*x^2]) + (b*(
13*c^2*d + 25*e)*x*Sqrt[-1 + c^2*x^2]*(d + e*x^2)^(3/2))/(840*c^3*e*Sqrt[c^2*x^2]) + (b*x*Sqrt[-1 + c^2*x^2]*(
d + e*x^2)^(5/2))/(42*c*e*Sqrt[c^2*x^2]) - (d*(d + e*x^2)^(5/2)*(a + b*ArcCsc[c*x]))/(5*e^2) + ((d + e*x^2)^(7
/2)*(a + b*ArcCsc[c*x]))/(7*e^2) + (2*b*c*d^(7/2)*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(35*
e^2*Sqrt[c^2*x^2]) - (b*(35*c^6*d^3 - 35*c^4*d^2*e - 63*c^2*d*e^2 - 25*e^3)*x*ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x
^2])/(c*Sqrt[d + e*x^2])])/(560*c^6*e^(3/2)*Sqrt[c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 587

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5347

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps \begin{align*} \text {integral}& = -\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b c x) \int \frac {\left (d+e x^2\right )^{5/2} \left (-2 d+5 e x^2\right )}{35 e^2 x \sqrt {-1+c^2 x^2}} \, dx}{\sqrt {c^2 x^2}} \\ & = -\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b c x) \int \frac {\left (d+e x^2\right )^{5/2} \left (-2 d+5 e x^2\right )}{x \sqrt {-1+c^2 x^2}} \, dx}{35 e^2 \sqrt {c^2 x^2}} \\ & = -\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b c x) \text {Subst}\left (\int \frac {(d+e x)^{5/2} (-2 d+5 e x)}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{70 e^2 \sqrt {c^2 x^2}} \\ & = \frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b x) \text {Subst}\left (\int \frac {(d+e x)^{3/2} \left (-6 c^2 d^2+\frac {1}{2} e \left (13 c^2 d+25 e\right ) x\right )}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{210 c e^2 \sqrt {c^2 x^2}} \\ & = \frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b x) \text {Subst}\left (\int \frac {\sqrt {d+e x} \left (-12 c^4 d^3-\frac {3}{4} e \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x\right )}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{420 c^3 e^2 \sqrt {c^2 x^2}} \\ & = -\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {(b x) \text {Subst}\left (\int \frac {-12 c^6 d^4-\frac {3}{8} e \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{420 c^5 e^2 \sqrt {c^2 x^2}} \\ & = -\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}-\frac {\left (b c d^4 x\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{1120 c^5 e \sqrt {c^2 x^2}} \\ & = -\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}-\frac {\left (2 b c d^4 x\right ) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1+c^2 x^2}\right )}{560 c^7 e \sqrt {c^2 x^2}} \\ & = -\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {2 b c d^{7/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {\left (b \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x\right ) \text {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{560 c^7 e \sqrt {c^2 x^2}} \\ & = -\frac {b \left (3 c^4 d^2-38 c^2 d e-25 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{560 c^5 e \sqrt {c^2 x^2}}+\frac {b \left (13 c^2 d+25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e \sqrt {c^2 x^2}}+\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e \sqrt {c^2 x^2}}-\frac {d \left (d+e x^2\right )^{5/2} \left (a+b \csc ^{-1}(c x)\right )}{5 e^2}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \csc ^{-1}(c x)\right )}{7 e^2}+\frac {2 b c d^{7/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{35 e^2 \sqrt {c^2 x^2}}-\frac {b \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{560 c^6 e^{3/2} \sqrt {c^2 x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.59 (sec) , antiderivative size = 304, normalized size of antiderivative = 0.81 \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\frac {96 a \left (d+e x^2\right )^3 \left (-2 d+5 e x^2\right )+\frac {2 b e \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right ) \left (75 e^2+2 c^2 e \left (82 d+25 e x^2\right )+c^4 \left (57 d^2+106 d e x^2+40 e^2 x^4\right )\right )}{c^5}+\frac {3 b \left (32 c^4 d^4 \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )+\frac {e \left (35 c^6 d^3-35 c^4 d^2 e-63 c^2 d e^2-25 e^3\right ) \sqrt {1-\frac {1}{c^2 x^2}} x^4 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,c^2 x^2,-\frac {e x^2}{d}\right )}{\sqrt {1-c^2 x^2}}\right )}{c^5 x}+96 b \left (d+e x^2\right )^3 \left (-2 d+5 e x^2\right ) \csc ^{-1}(c x)}{3360 e^2 \sqrt {d+e x^2}} \]

[In]

Integrate[x^3*(d + e*x^2)^(3/2)*(a + b*ArcCsc[c*x]),x]

[Out]

(96*a*(d + e*x^2)^3*(-2*d + 5*e*x^2) + (2*b*e*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2)*(75*e^2 + 2*c^2*e*(82*d + 25
*e*x^2) + c^4*(57*d^2 + 106*d*e*x^2 + 40*e^2*x^4)))/c^5 + (3*b*(32*c^4*d^4*Sqrt[1 + d/(e*x^2)]*AppellF1[1, 1/2
, 1/2, 2, 1/(c^2*x^2), -(d/(e*x^2))] + (e*(35*c^6*d^3 - 35*c^4*d^2*e - 63*c^2*d*e^2 - 25*e^3)*Sqrt[1 - 1/(c^2*
x^2)]*x^4*Sqrt[1 + (e*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, c^2*x^2, -((e*x^2)/d)])/Sqrt[1 - c^2*x^2]))/(c^5*x) + 9
6*b*(d + e*x^2)^3*(-2*d + 5*e*x^2)*ArcCsc[c*x])/(3360*e^2*Sqrt[d + e*x^2])

Maple [F]

\[\int x^{3} \left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\operatorname {arccsc}\left (c x \right )\right )d x\]

[In]

int(x^3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x)),x)

[Out]

int(x^3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x)),x)

Fricas [A] (verification not implemented)

none

Time = 2.24 (sec) , antiderivative size = 1697, normalized size of antiderivative = 4.54 \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate(x^3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x)),x, algorithm="fricas")

[Out]

[1/6720*(96*b*c^7*sqrt(-d)*d^3*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 -
 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) - 3*(35*b*c^6*d^3 - 35*b*c^4*d^2*e - 63*b*c
^2*d*e^2 - 25*b*e^3)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*
x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*(240*a*c^7*e^3*x^6 + 384*a*c^7*d*e^2*x
^4 + 48*a*c^7*d^2*e*x^2 - 96*a*c^7*d^3 + 48*(5*b*c^7*e^3*x^6 + 8*b*c^7*d*e^2*x^4 + b*c^7*d^2*e*x^2 - 2*b*c^7*d
^3)*arccsc(c*x) + (40*b*c^5*e^3*x^4 + 57*b*c^5*d^2*e + 164*b*c^3*d*e^2 + 75*b*c*e^3 + 2*(53*b*c^5*d*e^2 + 25*b
*c^3*e^3)*x^2)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^7*e^2), 1/6720*(192*b*c^7*d^(7/2)*arctan(-1/2*sqrt(c^2*x
^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) - 3*(35*b*c
^6*d^3 - 35*b*c^4*d^2*e - 63*b*c^2*d*e^2 - 25*b*e^3)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*
d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*(240*a
*c^7*e^3*x^6 + 384*a*c^7*d*e^2*x^4 + 48*a*c^7*d^2*e*x^2 - 96*a*c^7*d^3 + 48*(5*b*c^7*e^3*x^6 + 8*b*c^7*d*e^2*x
^4 + b*c^7*d^2*e*x^2 - 2*b*c^7*d^3)*arccsc(c*x) + (40*b*c^5*e^3*x^4 + 57*b*c^5*d^2*e + 164*b*c^3*d*e^2 + 75*b*
c*e^3 + 2*(53*b*c^5*d*e^2 + 25*b*c^3*e^3)*x^2)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^7*e^2), 1/3360*(48*b*c^7
*sqrt(-d)*d^3*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)*
x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) + 3*(35*b*c^6*d^3 - 35*b*c^4*d^2*e - 63*b*c^2*d*e^2 - 25*b*e
^3)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/(c^3*e^2*x^4 - c*
d*e + (c^3*d*e - c*e^2)*x^2)) + 2*(240*a*c^7*e^3*x^6 + 384*a*c^7*d*e^2*x^4 + 48*a*c^7*d^2*e*x^2 - 96*a*c^7*d^3
 + 48*(5*b*c^7*e^3*x^6 + 8*b*c^7*d*e^2*x^4 + b*c^7*d^2*e*x^2 - 2*b*c^7*d^3)*arccsc(c*x) + (40*b*c^5*e^3*x^4 +
57*b*c^5*d^2*e + 164*b*c^3*d*e^2 + 75*b*c*e^3 + 2*(53*b*c^5*d*e^2 + 25*b*c^3*e^3)*x^2)*sqrt(c^2*x^2 - 1))*sqrt
(e*x^2 + d))/(c^7*e^2), 1/3360*(96*b*c^7*d^(7/2)*arctan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*
x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + 3*(35*b*c^6*d^3 - 35*b*c^4*d^2*e - 63*b*c^2*d*e^
2 - 25*b*e^3)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/(c^3*e^
2*x^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) + 2*(240*a*c^7*e^3*x^6 + 384*a*c^7*d*e^2*x^4 + 48*a*c^7*d^2*e*x^2 - 96
*a*c^7*d^3 + 48*(5*b*c^7*e^3*x^6 + 8*b*c^7*d*e^2*x^4 + b*c^7*d^2*e*x^2 - 2*b*c^7*d^3)*arccsc(c*x) + (40*b*c^5*
e^3*x^4 + 57*b*c^5*d^2*e + 164*b*c^3*d*e^2 + 75*b*c*e^3 + 2*(53*b*c^5*d*e^2 + 25*b*c^3*e^3)*x^2)*sqrt(c^2*x^2
- 1))*sqrt(e*x^2 + d))/(c^7*e^2)]

Sympy [F(-1)]

Timed out. \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(x**3*(e*x**2+d)**(3/2)*(a+b*acsc(c*x)),x)

[Out]

Timed out

Maxima [F(-2)]

Exception generated. \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\int { {\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{3} \,d x } \]

[In]

integrate(x^3*(e*x^2+d)^(3/2)*(a+b*arccsc(c*x)),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^(3/2)*(b*arccsc(c*x) + a)*x^3, x)

Mupad [F(-1)]

Timed out. \[ \int x^3 \left (d+e x^2\right )^{3/2} \left (a+b \csc ^{-1}(c x)\right ) \, dx=\int x^3\,{\left (e\,x^2+d\right )}^{3/2}\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

[In]

int(x^3*(d + e*x^2)^(3/2)*(a + b*asin(1/(c*x))),x)

[Out]

int(x^3*(d + e*x^2)^(3/2)*(a + b*asin(1/(c*x))), x)